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Particle Production for a Muon Storage Ring:

I. Targetry and π/µ Yield ?
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Abstract

Efficient production and collection of a large number of muons is needed to make
a neutrino factory based on a muon storage ring viable. Results of extensive mars

simulations are reported for 2 to 30 GeV protons on various targets in a 20 T hybrid
solenoid, followed by a matching section and decay channel. Part I describes pion
and muon yields, targetry issues, and beam energy and power considerations. Part II
describes radiation loads on targets, the capturing system and shielding.
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1 Introduction

To achieve adequate parameters of a neutrino factory based on a muon storage
ring [1] it is necessary to produce and collect large numbers of muons. The
system starts with a proton beam impinging on a thick target sitting in a
high-field solenoid (20 T, 1-m long, aperture radius Ra=7.5 cm), followed by
a 3-m long matching section and a solenoidal decay channel (1.25 T, 50-100 m
in length, Ra=30 cm) which collects muons resulting from pion decay [2,3].
Optimization of beam, target and solenoid parameters were done over the
years with the mars code [4,5] for a µ+µ−collider project [2,3,6–9]. This paper
focuses on parameters needed for a muon storage ring and briefly describes
the results of extensive mars simulations of π/µ-yield (Part I) and radiation
fields in the target station and capturing system (Part II) for 2 to 30 GeV
proton beams. Preliminary results were given in Ref. [1,9].
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2 Captured π/µ beam vs target and beam parameters

Realistic 3-D geometry together with material and magnetic field distributions
based on the solenoid magnet design optimization have been implemented
into mars. Graphite (C) and mercury (Hg) tilted targets were studied. A two
interaction length target (80 cm for C of radius RT=7.5 mm and 30 cm for
Hg of RT=5 mm) is found to be optimal in most cases, keeping RT ≥2.5 σx,y,
where σx,y are the beam RMS spot sizes. The calculation model (Fig. 1),
keeping the main features of the baseline design [8,9], has been significantly
refined in the course of the study [1]. A deviation of Bz and Br (Fig. 1 (right))
from the ideal field [8,9], results in the reduction of the π/µ-yield in the decay
channel by about 7% for C and by 10-14% for Hg targets.
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Fig. 1. mars model of the target/solenoid system (left) and Bz field profile (right).
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Fig. 2. Energy spectra of π+ + µ+ for 4 to 24 GeV protons (left) and numbers
of particles in the (Emin–0.8 GeV) interval vs Emin for 16 GeV protons (right) at
z=9 m for a 80-cm C target (RT=7.5 mm, α=50 mrad).
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Results of a detailed optimization of the particle yield Y are presented be-
low, in most cases for a sum of the numbers of π and µ of a given sign and
energy interval at a fixed distance z=9 m from the target. It turns out, that
for proton energies Ep from a few GeV to about 30 GeV, the shape of the
low energy spectrum of such a sum is energy-independent and peaks around
E=130 MeV, where E is π/µ kinetic energy (Fig. 2). Moreover, the sum is
practically independent of z at z ≥9 m—confirming a good matching and
capturing—with a growing number of muons and proportionally decreasing
number of pions along the decay channel. For the given parameters the inter-
val of 30 MeV<E<230 MeV around the spectrum maximum is considered as
the one to be captured by a phase rotation system.
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Fig. 3. Yield from Hg and C targets vs Ep (left) and yield from a Hg target at
Ep=16 GeV vs tilt angle (right).

The yield Y grows with the proton energy Ep, is almost material-independent
at low energies and grows with target A at high energies, being almost a factor
of two higher for Hg than for C at Ep=16-30 GeV (Fig. 3). To avoid absorption
of spiraling pions by target material, the target and beam are tilted by an angle
α with respect to the solenoid axis. The yield is higher by 10-30% for the tilted
target. For a short Hg target, α=150 mrad seems to be the optimum (Fig. 3),
while α=50 mrad is chosen in Ref. [1] for a long C target to locate a primary
beam dump at ∼6 m from the target. Fig. 4 shows the dependence of the yield
on Hg and C target radii under the baseline RT = 2.5σx,y condition. Figs. 4
and 5 show that maximum yield occurs at target radius RT=7.5 mm for C and
RT=5 mm for Hg targets with RT = 3.5σx,y and RT = 4σx,y conditions for
the beam spot size, respectively. The baseline criterion RT = 2.5σx,y reduces
the yield by about 10% for the graphite target, but is more optimal from the
energy deposition point of view (Fig. 5).

The ratio of Hg to C yields varies with the beam energy, as well as with other
beam/target parameters. At 16 GeV it is in the range of 1.5-1.7 for positives
and 1.7-2.2 for negatives. Optimizing beam/target parameters, it is found that
the best results for the particle yield in the decay channel at 16 GeV with the
given cut are: Yπ++µ+ = 0.182 and Yπ−+µ− = 0.153 for the 80-cm C target and
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Fig. 4. Yield as a function of a target radius, Hg (left) and C (right), for a 16-GeV
proton beam and several tilt angles.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Nσ

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y
ie

ld
 a

t 9
 m

+, C, RT=7.5 mm, α=50 mrad
−, C
+, Hg, RT=5 mm, α=100 mrad
−, Hg

RT=Nσ σx,y

Hg

C

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Nσ

10

100

1000
P

ea
k 

te
m

pe
ra

tu
re

 r
is

e 
pe

r 
pu

ls
e 

(o C
)

 C, RT=7.5 mm, α=50 mrad
Hg, RT=5 mm, α=100 mrad

RT=Nσ σx,y

T0=27
o
C

Hg

C

Fig. 5. Yield (left) and maximum instantaneous temperature rise (right) as a func-
tion of a target to a RMS beam spot size ratio (right).

Yπ++µ+ = 0.309 and Yπ−+µ− = 0.315 for the 30-cm Hg target, i.e., at 16 GeV
(best Hg)/(best C) = 1.7 (+) and 2.06 (-).

3 Beam power considerations

The yield per beam power is almost independent of Ep for high-Z targets at
6< Ep <24 GeV and drops by 30% at 16 GeV from a 6-GeV peak for graphite
(Fig. 6 (left)). The higher Ep reduces the number of protons on target. To
provideNµ=2×1020 muon decays per year in the straight section at 15 Hz, one
needs to have 6×1012 muons per pulse in the decay channel, assuming a factor
of 3 total loss on the way from the decay channel to the ring. With that, needed
are 3.30×1013 and 3.92×1013 protons per pulse at 16 GeV on the optimal C
target for positives and negatives, respectively. This corresponds to 1.27 and
1.51 MW beams. For a Hg target, these numbers are 1.7 and 2.06 times lower.
Fig. 6 (right) shows the required number of protons Np and beam power as
a function of Ep for the C target, while Fig. 7 presents power dissipation and
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peak heating in the C target to provide Nµ=2×1020 muon decays per year.
At 16 GeV, the peak instantaneous temperature rise is 60-70◦C and power
dissipation is 34.3 and 40.7 kW for the µ+ and µ− modes, respectively. For
Hg targets, the required beam power is lower, 0.73-0.75 MW; however, the
peak temperature rise per pulse is 750◦C, because of higher energy deposition
density.
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Fig. 6. Y and Y/Ep (left) and Np and beam power (right) for C target.
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Fig. 7. Power dissipation in C target (left) and peak energy deposition and tem-
perature rise in C target (right), providing Nµ=2×1020 muon decays per year. A
dashed line shows a peak energy deposition density per 1 proton on target.

4 Conclusions

The number of muons required for a neutrino factory can be provided in the
decay channel for further capturing by a phase rotation system with graphite
and mercury targets impinged by intense 15-Hz proton beams in the energy
range of 2 to 30 GeV. Depending on proton energy, the required beam power
is 1 to 2 MW with a graphite target, and 0.7-1 MW with a mercury target.
The results obtained in the course of thorough mars simulations provide a
basis for further optimization of the target/capture system.
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